更新时间:2014-09-17 李教员
又是一年开学时,现在开学的初三生,面对的是2015中考。每年这时候都有不少同学问:初一初二数学成绩不好,中考是不是就没有希望赶上来了?
其实不然。通过初一、初二两年的学习,想必同学们都有这样的亲身体会,在学初中的有关基础知识内容时,只要认真听老师讲解,都能听得懂,所以要掌握一般的基础知识并不难。练习中一步到位的与新知识有关的简单题也并不难做,难的是较复杂一点的、与以前学过但自己又没有掌握好的知识联系在一起的综合题。所谓“数学学习,一步跟不上,则步步跟不上”,就是指这一类的题目。但这并不是说,因为这样,就不要去学新知识,就学不好新知识。完全不是这么回事。即使你以前的知识都没学好,仍然能依据新学的这些知识去解决有关的简单问题。并且从中可以增强自己的自信心:我这节课认真学了,听懂了,会用学到的新知识去解决一些问题了。之所以碰到难一点的题我不会做,那是因为我以前的知识没学好,在某一个地方卡住了,做不下去了,只要我把以前的知识好好补一补,像现在这样把知识一点一滴地学到手,我就不信学习成绩赶不上去。
事实是,前几届每届都有好些个同学原本数学成绩很差,到初三了才着急起来,认真地持之以恒地补习旧知识,学习新知识,最后在中考时取得了较理想的成绩。有的从平时考十几、二十几分到中考考出七、八十分,有的从五、六十分到中考考出一百多分。当然,除这些同学自身的努力外,还与中考题大部分题目比较容易也有一定的关系(虽然中考是选拔性考试,但也要考虑到初中毕竟还是属于九年义务教育阶段,中考面临的是全体同学们,必然要照顾到绝大多数同学的实际情况;中考成绩也是体现九年义务教育阶段素质教育成果的一个重要方面,因此中考题里面始终都会有大量基础题。)但再容易的题目也要你能掌握有关知识的最基础的东西才行呀!如果你自暴自弃,每一节课都不认真学,连最简单的题也不会做,我看你到中考时也只有望题兴叹,后悔莫及。有不少同学中考后都有这样的感叹:早知中考数学题这么容易,我平时学习只要稍微认真一点,平时测验能真正拿个五、六十分(没有水分的),中考拿个八九十分绝对没问题。(中考数学满分为120分) 我介绍这些情况,目的只有一个,就是劝那些怕数学的同学不要放弃数学,数学的基础知识并不难学,相信每一位同学都能学好。应树立起自信心,相信自己,相信自己通过努力一定能与其他同学缩小差距!
也许有的同学要问,那么怎样努力呢?您能不能介绍一点行之有效且并不难学的好方法啊?当然有,下面我就来谈谈如何操作才能真正学好数学。
一、该记的记,该背的背,不要以为理解了就行
有的同学认为,数学不像英语、社政,要背单词、背年代、背人名、地名,数学靠的是智慧、技巧和推理。我说你只讲对了一半。数学同样也离不开记忆。试想一下,小学的加、减、乘、除运算要不是背熟了“乘法九九表”,你能顺利地进行运算吗?尽管你理解了乘法是相同加数的和的运算,但你在做9×9时用九个9去相加得出81就太不合算了。而用“九九八十一”得出就方便多了。同样,是运用大家熟记的法则做出来的。同时,数学中还有大量的规定需要记忆,比如在化简二次根式时规定:“如果没有特别说明,本章根号内的字母都是正数。”等等。因此,我觉得数学更像游戏,它有许多游戏规则(即数学中的定义、法则、公式、定理等),谁记住了这些游戏规则,谁就能顺利地做游戏;谁违反了这些游戏规则,谁就被判错,罚下。因此,数学的定义、法则、公式、定理等一定要记熟,有些最好能背诵,朗朗上口。比如大家熟悉的“乘法公式、求根公式”“特殊角三角函数值”等,我看我们的同学有的背得出,有的就背不出。在这里,我向背不出的同学敲一敲警钟,如果背不出这些公式,将会对今后的学习造成很大的麻烦,因为今后的学习将会大量地用到这些公式和数据。 对数学的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。打一个比方,数学的定义、法则、公式、定理就像木匠手中的斧头、锯子、墨斗、刨子等,没有这些工具,木匠是打造不出家具的;有了这些工具,再加上娴熟的手艺和智慧,就可以打出各式各样精美的家具。同样,记不住数学的定义、法则、公式、定理就很难解数学题。而记住了这些再配以一定的方法、技巧和敏捷的思维,就能在解数学题,甚至是解数学难题中得心应手,左右逢源。
二、了解几个重要的数学思想
1、“方程”的思想
数学是研究事物的空间形式和数量关系的,初中最重要的数量关系是等量关系,其次是不等量关系。最常见的等量关系就是“方程”。比如等速运动中,路程、速度和时间三者之间就有一种等量关系,可以建立一个相关等式:速度×时间=路程,在这样的等式中,一般会有已知量,也有未知量,像这样含有未知量的等式就是“方程”,而通过方程里的已知量求出未知量的过程就是解方程。我们在小学就已经接触过简易方程,而初一则比较系统地学习解一元一次方程,并总结出解一元一次方程的五个步骤。如果学会并掌握了这五个步骤,任何一个一元一次方程都能顺利地解出来。初二和初三我们学习了解一元二次方程、二元二次方程组、简单的三角方程;到了高中我们还将学习指数方程、对数方程、线性方程组、参数方程、极坐标方程等。解这些方程的思维几乎一致,都是通过一定的方法将它们转化成一元一次方程或一元二次方程的形式,然后用大家熟悉的解一元一次方程的五个步骤或者解一元二次方程的求根公式加以解决。物理中的能量守恒,化学中的化学平衡式,现实中的大量实际应用,都需要建立方程,通过解方程来求出结果。因此,同学们一定要将解一元一次方程和解一元二次方程学好,进而为学好其它形式的方程打好基础。所谓的“方程”思想就是对于数学问题,特别是现实当中碰到的未知量和已知量的错综复杂的关系,善于用“方程”的观点去构建有关的方程,进而用解方程的方法去解决它。
2、“数形结合”的思想
大千世界,“数”与“形”无处不在。任何事物,剥去它的质的方面,只剩下形状和大小这两个属性,就交给数学去研究了。初中数学的两个分支——代数和几何,代数是研究“数”的,几何是研究“形”的。但是,研究代数要借助“形”,研究几何要借助“数”,“数形结合”是一种趋势,越学下去,“数”与“形”越密不可分,到了高中,就出现了专门用代数方法去研究几何问题的一门课,叫做“解析几何”。在初三,建立平面直角坐标系后,研究函数的问题就离不开图象了。往往借助图象能使问题明朗化,比较容易找到问题的关键所在,从而解决问题。在今后的数学学习中,要重视“数形结合”的思维训练,任何一道题,只要与“形”沾得上一点边,就应该根据题意画出草图来分析一番,这样做,不但直观,而且全面,整体性强,容易找出切入点,对解题大有益处。尝到甜头的人慢慢会养成一种“数形结合”的好习惯。
3、“对应”的思想
“对应”的思想由来已久,比如我们将一支铅笔、一本书、一栋房子对应一个抽象的数“1”,将两只眼睛、一对耳环、双胞胎对应一个抽象的数“2”;随着学习的深入,我们还将“对应”扩展到对应一种形式,对应一种关系,等等。比如我们在化简求值计算中,将式子中有关字母或某个整体的值,对应代入,直接算出原式的结果。又比如我们到初三综合学习了与圆有关的角,圆心角、圆周角、弦切角的数量关系必须“对应”同一段弧才能成立。这就是运用“对应”的思想和方法来解题。初二、初三我们还看到数轴上的点与实数之间的一一对应,直角坐标平面上的点与一对有序实数之间的一一对应,函数与其图象之间的对应。总之,“对应”的思想在今后的学习中将会发挥越来越大的作用。
4、“转化”的思想
解数学题最根本的途径是“化难为易,化繁为简,化未知为已知”,也就是把复杂繁难的数学问题通过一定的数学思维、方法和手段,逐渐将它转变成一个大家熟知的简单的数学形式,然后通过大家所熟悉的数学运算把它解决。 比如,我们学校要扩大校园,需要向某村征地。而某村给了一块形状不规则的地,如何丈量它的面积呢?首先,使用适当的测量工具,依据一定的比例,将实际地形绘制成纸上图形,然后将纸上图形分割成若干块梯形、长方形、三角形,利用学过的面积计算方法,计算出这些图形的面积之和,也就得到了这块不规则地形的总面积。在这里,我们把无法计算的不规则图形转化成了可以计算的规则图形,从而解决了土地丈量问题。另外,我们前面提到的各种多元方程、高次方程,利用“消元”、“降次”等方法,最终都可以把它们转化成一元一次方程或一元二次方程,然后用已知的步骤或公式把它们解决。 “转化和替代”的思想,是解题的最重要的思维习惯。面对难题,面对没有见过的题,首先就要想到“转化”,也总是能够“转化”的。平时,要多留心老师是怎样解题的,是怎样“化难为易、化繁为简、化未知为已知”的。同学之间也应多交流交流“成功转化”的体会,深入理解“转化”的真正含义,切实掌握“转化”的思维和技巧。